
Multiple Season Model 

Part I 
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Recap 

 From a population of S sampling units, s  are 

selected and surveyed for the species. 

 

 Units are closed to changes in occupancy during 
a common ‘season’. 

 

 Units must be repeatedly surveyed within a 
season. 

 

 Units may be surveyed over multiple seasons 
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Recap 

Season 

1 

1 2 k1 ... 
Surveys 

2 

1 2 k2 ... 

T 

1 2 kT ... 

Local Extinction 

Colonization 

Closure 
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Recap 
Season 

Unit 1 2 … T 

1 101 001 … 011 

2 000 100 ... 110 

3 100 000 ... 000 

. . . ... . 

. . . ... . 

. . . ... . 

. . . ... . 

s 000 000 ... 000 
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Another situation… 

 Detection/nondetection data may be 
collected at a different set of units each 
season. 
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Another situation… 
Season 

Unit 1 2 … T 

1 101 011 

2 000 110 

3 100 

. 001 

. 100 

. 000 

. 000 
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How to model multi-season data? 

 Consider the data consists of 2 layers 

 true presence/absence of the species each 
season 

 observed data conditional upon true 
occupancy state of the site 

 

 Can use either observed or complete 
likelihood. 
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How to model multi-season data? 

1. Fit the single-season model to the data 
from each season 
• Ignores structure and potential information 

when same units are surveyed over time 

 

2. Fit a model where the dynamic processes 
of occupancy are explicitly considered 
• Incorporates a form of temporal 

autocorrelation or heterogeneity in 
occupancy status of units 
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Implicit Dynamics 

 Effectively, fit multiple single-season models to 
the data. 

 Can introduce structure to model systematic 
changes in occupancy. 

 

 

 Does not model the dynamic processes of 
occupancy; local-extinctions and colonizations. 

 Implicit dynamics are non-Markovian (random): 

Pr(occupancy at t) is independent of state at t -1.  

 logit ψ a bt t 
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Explicit Dynamics 

 Barbraud et al. (2003) and MacKenzie et al. 
(2003) extended the single season model by 
including parameters for these 2 dynamic 
processes. 

 

 Model the biological processes of change in 
occupancy. 

 

 Model occupancy as a first order Markov process: 

Pr(occupancy at t) depends on occupancy state at 

t -1. 
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Explicit Dynamics 

S1 S2 S3 

Occupied 

Unoccupied 
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Explicit Dynamics 

S1 S2 S3 

Occupied 

Unoccupied 

Not Ext. 

Ext. 



13 

Explicit Dynamics 

S1 S2 S3 

Occupied 

Unoccupied 

Not Ext. 

Ext. 

Not Col. 

Col. 
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Explicit Dynamics 

S1 S2 S3 

Occupied 

Unoccupied 

Not Ext. Not Ext. 

Ext. Ext. 

Not Col. Not Col. 

Col. Col. 
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Explicit Dynamics 

y1 = probability unit occupied in season 1 

et = probability a unit becomes unoccupied 

 between seasons t and t +1 

gt = probability a unit becomes occupied 

 between seasons t and t +1 

pt,j = probability species detected at a unit in 

  survey j of season t (given presence) 



16 

Explicit Dynamics 

S1 S2 S3 

Occupied 

Unoccupied 

Not Ext. Not Ext. 

Ext. Ext. 

Not Col. Not Col. 

Col. Col. 
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Explicit Dynamics 

1ψ

11 ε 21 ε

1ε 2ε

11 ψ

11 γ 21 γ

1γ 2γ

S1 S2 S3 
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Explicit Dynamics 

 Complication is that species is detected 
imperfectly so can never be certain that a 
unit is unoccupied in any given season… 
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For example, 

 

Explicit Dynamics 

1 101 000h
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For example, 

 

 

Verbal description: species is present at the 
unit in season 1, was detected in first and 
third survey, not detected in second 
survey. Between seasons, species did not 
go locally extinct but was never detected 
in season 2, OR species did go locally 
extinct. 

Explicit Dynamics 

1 101 000h



21 

Explicit Dynamics 

   

   

1 1 1,1 1,2 1,3

3

1 2, 1

1

Pr 101 000 ψ 1

1 ε 1 εj

j

p p p

p


   

  
   

  


h

For example, 

 

Mathematical translation: 

 

1 101 000h
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For example, 

 

Explicit Dynamics 

2 000 010h
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For example, 

 

 

Verbal description: species is present in 
season 1, but never detected, did not go 
locally extinct between seasons and was 
detected in the second survey. OR species 
was absent in season 1, colonized the unit 
between seasons and was detected in the 
second survey. 

Explicit Dynamics 

2 000 010h
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Explicit Dynamics 

       

   

3

2 1 1, 1 1 1

1

2,1 2,2 2,3

Pr 000 010 ψ 1 1 ε 1 ψ γ

1 1

j

j

p

p p p



  
      

  

  

h

For example, 

 

Mathematical translation: 

 

2 000 010h
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Explicit Dynamics 

• ft is the matrix of transition probabilities 
between occupied and unoccupied states 

between seasons t and t +1 

1 γ γ

ε 1 ε

t t

t

t t

 
  

 
f 0 1 11 ψ ψ f

U U U O

O U O O
t

  
  

  
f
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Explicit Dynamics 

 pht is the vector of probabilities for an 

observed history in season t, conditional 
upon each occupancy state 

 {101}

1 2 3

0

1t

t t tp p p

 
  

 
p

 
3

{000}

1

1

1t

tj
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

 
 
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Explicit Dynamics 

 Generally, 

   
1

0 , ,

1

Pr
it iT

T

i t t T

t

D




  h hh p pf f

 where, D(Y) is a diagonal matrix with the 
elements of Y on the main diagonal. 
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Explicit Dynamics 
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Explicit Dynamics 

 Generally, 
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Explicit Dynamics 

 Generally, 

   
1

0 , ,
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Explicit Dynamics 

 Generally, 

   
1

0 , ,

1

Pr
it iT

T

i t t T

t

D




  h hh p pf f

 where, D(Y) is a diagonal matrix with the 
elements of Y on the main diagonal. 

   
1
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s

i
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

 θ h h   
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Explicit Dynamics 

 Alternatively could specify the complete 
data likelihood. 
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Implicit vs. Explicit Dynamics? 

 When a small fraction of the units are 
continually surveyed, the implicit 
dynamics approach may be more 
numerically reliable. 

 

 Implicit model only models patterns in 
occupancy each season, or assumes 
changes in occupancy are random. 
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Either Approach 

 Probabilities could be functions of 
covariates. 

 

 Allow for missing values, both individual 
surveys and for entire seasons. 
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Example 

Grand skinks (Oligosoma grande) near 
Macraes Flat, Otago, NZ 

Photo: Catherine Roughton, University of Otago 
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37 
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The data 

 Rock outcrops surveyed by DOC up to 3 
times per year. 

 

 5-year period with 338 outcrops. 

 

 Interested in colonisation and extinction 
probabilities, and whether they differ 
between areas of tussock and pasture. 
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The results 

Fit 2 models: 

       ψ γ εH t H t H p t         ψ γ εH t t p tvs. 

DAIC >7 in favour of the former model 

Odds ratio for an outcrop surrounded by pasture; 

  a) being colonized is 0.4 (0.2, 0.9) 

  b) going locally extinct is 2.1 (1.0, 4.4) 
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Multiple Season Model 

Part II 
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Explicit Dynamics: Alternative 

Parameterizations 

 Initial parameterization: (y1, et, gt) 

 

 Complement of local extinction is local 
survival or persistence: 

 

 

 Alternative parameterization: (y1, ft, gt) 

 

1 εt tf  
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Explicit Dynamics: Alternative 

Parameterizations 

 Colonization =  

  Pr(occupied at t+1|unoccupied at t) 

 

 

 Persistence =  

  Pr(occupied at t+1|occupied at t) 

 1

11 εt t tf    y

 0

1t tg  y
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Explicit Dynamics: Alternative 

Parameterizations 

 Estimating occupancy at t>1 

 

 

 Alt. parameterizations: (yt, et), (yt, gt) 

 

 

 Occupancy growth rate: 

 

 

 Alt. parameterizations:(y1, et, t), (y1, gt, t) 

t

t
t

ψ

ψ
  λ 1

1 (1 ) (1 )t t t t ty  y  e   y g
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Explicit Dynamics: Alternative 

Parameterizations 

 Previous definition for growth rate not 
entirely satisfactory, alternatively: 

 

 

 

 

 

 If   then: 
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Explicit Dynamics: Alternative 

Parameterizations 

 ‘Turnover’ of occupied units may be of interest. 

 

 τt = Pr (occupied site at t+1 is a newly occupied 
site). 

 

 

 

 Can also estimate τt directly as local extinction 
from reverse-time analysis. 

 

 Alt. parameterizations: (y1, τt, et), (y1, τt, gt) 

1

(1 )t t
t

t

 y g
 

y
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Explicit Dynamics: Alternative 

Parameterizations 

 Selection: based on parameters about which 
direct inference and covariate modeling are of 
primary interest. 
 What’s your study objective again? 

 

 

 But, generally focusing on ‘trends’ may not be 
that informative. Understanding why a trend is 
occurring frequently requires knowledge about 
the underlying dynamics. 
 Why is there a downwards trend? High level of 

extinction or low level of colonization? 
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Example: House Finch Expansion in 

North America 

 Native to south-west 
US and Mexico. 

 

 Released in Long 
Island, NY in 1940’s. 

 

 Model expansion of 
species range from 
1976-2001 using BBS 

data. 
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The data 

 Each BBS route is considered the sampling unit. 

 

 The 50 stops along the route represent our 
repeated surveys. 

 

 Distance from release point (measured in 100km 
bands) was considered as a covariate for all 
parameters. 

 

 The covariate ‘f’ was defined for detection 
probability to =1 if HF detected at >10 stops at 
that route in a previous year, 0 otherwise. 
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Results 

 After some model selection, the model 
y76(d)g(year*d)e(d)p(year*d+f) was 

ranked best. 
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Characterizing the Processes Underlying 

Occupancy Dynamics 

 How does the occupancy status of units 
change over time? 

 Markovian dynamics (i.e., gt, et; explicit model) 

 Random dynamics (i.e., gt  1 et; implicit model) 

 No change (i.e., gt  et  0) 

 

 Each of these models can be fit to the 
data and formally compared 
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Characterizing the Processes Underlying 

Occupancy Dynamics 

 Random dynamics 

 
1 γ γ 1 γ γ
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Characterizing the Processes Underlying 

Occupancy Dynamics  

 Is the population at equilibrium? 
(1) Can probability of occupancy be modeled as constant 

over time 

Model comparison:   vs.  

 

(2) Are the vital rates constant over time (i.e., is it a 
stationary Markov process) 

Model comparison:   vs.  

 

 These 2 concepts of equilibrium not equivalent 
(compensating vital rates, transient dynamics) 

 

 Equilibrium occupancy:  

 

.yty

,t te g ge,

eg

g
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Perturbation Analysis 

 Purpose: to assess sensitivity of a system state 
variable or related quantity to changes in system 
rate parameters 

 

 Equilibrium occupancy, ψ*, reflects system well-
being for patch occupancy models and can be 
viewed in same manner as asymptotic λ of 
population projection models 

 

 Develop expressions for sensitivity of ψ* to 
changes in probabilities of local extinction and 
colonization 
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Sensitivities for Equilibrium Occupancy 
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Sensitivities for Patch Occupancy 

Models: Intuition 

 Prediction: sensitivity should be greatest for the 
parameter that applies to the larger number of 
patches (occupied or unoccupied) 

 

 Results:  

* 0.5 s se gy   

* 0.5 s sg ey   

* 0.5 s se gy   
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Golden Eagles at Denali National Park, 

Alaska 

 1988-2007, April-May, C. McIntyre 
surveyed potential golden eagle territories 
(by helicopter, foot) up to 3 times 

 

 Removal occupancy design (stop at first 
detection) 

  

 Fit models reflecting different hypotheses 
about existence of dynamic equilibrium  
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1 20(.) (.) ( )p yry e

1(.) (.) (.) ( )p yry e g

1(.) (.) (.) (.)py e g

1(.) ( ) (.) ( )yr p yry e g

1(.) (.) ( ) ( )yr p yry e g

1(.) ( ) ( ) ( )yr yr p yry e g

Model selection of patch occupancy models for Golden Eagles 

in Denali National Park. 

Model AIC ΔAIC K 

1157.1 0 22 

1158.1 1 23 

1160.0 2.9 3 

1173.6 16.5 41 

1174.7 17.6 41 

1193.5 36.4 59 

Notes: AIC: Akaike information criterion. ΔAIC for the ith model is computed as AICi - min (AIC). K: number of parameters.  
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Occupancy Modeling Results 

 Support for hypothesis of equilibrium (constancy of 
occupancy and rate parameters) 

 

 Estimates 

 Colonization: 

 

 Extinction: 

 

 Equilibrium occupancy:  

 

 Sensitivities: 

ˆˆ 0.25 ( 0.026)SEg  

ˆˆ 0.05 ( 0.006)SEe  

ˆ * 0.83y 

8.2ˆ es 6.0ˆ gs
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Sensitivities for Equilibrium Occupancy: 

Considerations and Insights 

 Colonization is especially important for rare species (low 

ψ*) 

 Extinction is the more important process for common species 

(high ψ*) 

 Sensitivities are relevant to management, but are not the 

whole story: 

 

 

 x = management action 

 y = unit cost for management actions 

 θ = vital rate 

* x

x y

y  

  
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Finite Population 

 As for the single season situation, could 
use the data augmentation approach to 
predict the occupancy state of each unit 
each season. 

 

 Make inference about the proportion of 
sites occupied in the sample, or some 
other relevant summary of occupancy 
dynamics. 
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Summary 

 Multi-season models allow us to make inference 
about changes in occupancy and the underlying 
dynamic processes. 
 

 A suite of flexible methods is now available that 
account for: 

 detectability 

 covariates 

 unequal sampling effort 

 different types of 
dynamics 

 finite populations 

 spatial correlation 

 

 We believe that in the future much greater 
emphasis will be placed on understanding the 
dynamics of species occurrence. 


